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Outline of the talk

Many of the most important theorems in analysis assert that pointwise
hypotheses imply uniform conclusions. Perhaps the simplest example is the
result that “a continuous function on a compact set is uniformly
continuous”.

The uniform boundedness theorem is one of the central theorems of
functional analysis and it has first been published in Banach’s thesis, in the
year 1922. Uniform boundedness principle was discovered by Lebesgue in
1908 in investigations on Fourier series, it was isolated as a general
principle by Banach and Steinhaus.
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Outline of the talk

The uniform boundedness theorem (UBT) enables us to determine whether
the norms of a given collection of bounded linear operators {Tα} have a
finite least upper bound. Clearly, since the norm was defined to be a
real-valued (not an extended real-valued) mapping, the norm of each Tα
must be finite, but there is no guarantee that they might not form an
increasing sequence. The uniform boundedness theorem provides a criterion
for determining when such an increasing sequence is not formed. That is, it
states that a pointwise bounded sequence of bounded linear operators on
Banach spaces is also uniformly bounded.

In the talk, we discuss the following :

Proof of the UBT using Baire’s theorem
Proof of the UBT using gliding hump argument
Simple elementary proof of the UBT
Consequences/applications of UBT
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Notations

Before we start, let us see the notations first.

K the field of real or complex scalars
`1 the set of absolutely summable sequences
`2 the set of square summable sequences
`∞ the set of bounded sequences
c0 the set of convergent sequences coverging to 0
BX the closed unit ball in X
SX the unit sphere in X

M the closure of M
X ∗ the dual of X

N(T ) null space of T
R(T ) range of T

T ∗ the adjoint of T
‖T‖ a norm of the operator T

B(X ,Y ) the space of bounded linear operators from X into Y

P. Sam Johnson Uniform Boundedness Principle 4/53



Pointwise and Uniformly Bounded

Definition 1.
Let X and Y be normed spaces and let A be a family of linear operators
from X into Y . The family A is said to be pointwise bounded on a
subset E of X if for each x ∈ E , there exists Mx > 0 such that ‖Ax‖ ≤ Mx

for all A ∈ A, that is, supA∈A{‖Ax‖} <∞. In other words, for each
x ∈ E , there exists a ball B[0,Mx ] contains all Ax with A ∈ A.

The family A is said to be uniformly bounded on a subset E of X if there
exists M > 0 such that ‖Ax‖ ≤ M for all A ∈ A and for all x ∈ E . In other
words, there exists a ball B[0,M] contains all Ax with A ∈ A and x ∈ E .

We simply call A is uniformly bounded (or, norm-bounded) when
{‖A‖ : A ∈ A} is a bounded subset of real numbers (that is,
supA∈A{‖A‖} <∞).
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Pointwise and Uniformly Bounded

Clearly, uniformly bounded implies that pointwise bounded. The converse is
also true in finite dimensional normed spaces.

Exercise 2.
If a collection A of linear operators on a finite dimensional normed linear
space X which is pointwise bounded, then A is uniformly bounded.

Proposition 3.

Let X and Y be normed spaces and let A be a family of linear operators
from X into Y . Let E0 = {x ∈ X : ‖x‖ ≤, <,= r}.
A is pointwise (uniformly) bounded on E0 iff A is pointwise
(uniformly) bounded on X .
A is uniformly bounded on X iff A ⊆ B(X ,Y ) and {‖A‖ : A ∈ A} is
a bounded subset of real numbers, that is, supA∈A{‖A‖} <∞.
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Pointwise and Uniformly Bounded

Theorem 4.

Let X be a complete metric space and A be a set of continuous
complex-valued functions on X (not necessarily linear). Then either
1. A is uniformly bounded on some open ball (i.e., there exists a

nonempty open ball U in X such that sup{|Ax | : A ∈ A, x ∈ U} <∞,

or
2. there exists a dense subset D of X such that A is not ponitwise

bounded at every point of D (i.e., sup{|Ax | : A ∈ A} =∞ for each
x ∈ D).

Corollary 5.
Let (fn) be a sequence of complex-valued continuous functions on the real
line which converges at every point. Then there is an interval I and a finite
real number M such that |fn(x)| < M for all x ∈ I and n = 1, 2, . . ..
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Uniform Boundedness Theorem

Theorem 6 (Uniform boundedness principle, 1922).

Suppose X is Banach, Y is a normed space and A ⊆ B(X ,Y ). If A is
pointwise bounded, then A is uniformly bounded. That is, when X is
Banach, uniform boundedness and pointwise boundedness are same.

Proof. For each x ∈ X , there exists Mx > 0 such that ‖Ax‖ ≤ Mx for all A ∈ A. Let
En = {x ∈ X : ‖Ax‖ ≤ n, ∀A ∈ A}. Then X = ∪∞n=1En. By Baire’s category theorem, at least

one Ek is not nowhere dense set. That is, (Ek )
◦ = E◦k 6= ∅. As Ek has nonempty interior, there

exists u ∈ Ek and r > 0 such that B(u, r) ⊆ Ek . For every nonzero x ∈ X we have

u + x
2‖x‖ ∈ B(u, r) ⊆ Ek ⇒ ‖Au + A( x

2‖x‖ )‖ ≤ k, for all A ∈ A. Now ‖A( rx
2‖x‖ )‖ ≤ 2k, for all

A ∈ A since ‖Au‖ ≤ k. Therefore ‖Ax‖ ≤ 4k
r
‖x‖, for all x ∈ X , for all A ∈ A. Thus ‖A‖ ≤ 4k

r

for all A ∈ A.
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Aliter.

Let Dn = {x ∈ X : ‖Ax‖ > n, for some A ∈ A}. Let D = ∩∞n=1Dn. Since X is complete, Baire’s

theorem implies that either D is dense in X , or some Dn is nondense in X , that is, DN 6= X . Let

D be dense in X , and s(x) = sup{‖Ax‖ : A ∈ A}. If x ∈ Dn, then s(x) ≥ ‖Ax‖ > n for some

A ∈ A. Thus, if x ∈ D, then x ∈ Dn for all n, and so s(x) > n for all n, s(x) =∞, a

contradiction to pointwise bounded. Suppose some Dn is nondense in X , that is, DN 6= X . Then

there is a ∈ X , with a /∈ DN . Hence there is r > 0 such that the open ball B(a, r) is disjoint

from DN . So if x ∈ B(a, r), then x /∈ DN , and hence x /∈ DN for all A ∈ A, so ‖Ax‖ ≤ N for all

A ∈ A. Thus, ‖Ax‖ ≤ N for all A ∈ A and x ∈ B = B(a, r).

By Proposition 3 and Theorem 6, we have the following:

Corollary 1.
Let X be a Banach space, Y be a normed space and A be a subset of
B(X ,Y ) such that A is pointwise bounded. Then for each bounded subset
E of X , the set A is uniformly bounded on E .
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Completeness hypothesis cannot be dropped.

The completeness hypothesis cannot be dropped from uniform
boundedness principle.

Example 7.
X = c00 with respect to the norm ‖.‖p , 1 ≤ p ≤ ∞. Define fn(x) = nxn. Then supx |fn(x)| <∞
(because the terms of the sequence x are zero after some stage.) However ‖fn‖ = n, and hence
sup ‖fn‖ =∞.

Example 8.
X = c00 with sup norm and fn(x) =

∑n
j=1 xj . {fn} is pointwise bounded and ‖fn‖ = n because

|fn(x)| ≤ n‖x‖∞ and fn(1, . . . , 1, 0, . . .) = n. Note that {fn} is not uniformly bounded because
‖fn‖ = n is an unbounded set of real numbers.

Example 9.
The linear space X = P[a, b], all polynomials on [a, b] with respect to the norm
‖x‖ = maxmn=0{|an|}, where x = a0 + a1t + · · ·+ amtm. Define fn(x) =

∑n
m=0 am, then {fn} is

pointwise bounded but it is not uniformly bounded, since {‖fn‖ = n + 1} is unbounded.
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Continuous Seminorm

Actually only the following properties of A ∈ A are used in the proof of
Theorem 6. The function x 7→ ‖Ax‖ is continuous from X to nonnegative
real numbers, ‖A(x + y)‖ ≤ ‖Ax‖+ ‖Ay‖ and ‖A(kx)‖ ≤ |k | ‖Ax‖ for all
x and y in X and k ∈ K.

A function having these properties is known as a continuous seminorm
on X . Thus, the uniform boundedness theorem is true for a collection A of
continuous seminorms on X .

Theorem 10.
Let X be a Banach space, and let {pλ} be a family of continuous
nonnegative functions on X , each satisfying the conditions
pλ(x + y) ≤ pλ(x) + pλ(y) and pλ(−x) = pλ(x). Suppose for each x ,
supλ pλ(x) <∞. Then supλ sup‖x‖≤1 pλ(x) <∞.
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Proof

For each n, let Cn = {x : supλ pλ(x) ≤ n} = ∩λ{x : pλ(x) ≤ n}. Since pλ are continuous, Cn is

closed. By the hypothesis X = ∪nCn. So, by the Baire category theorem there exists an n0 such

that the set Cn0 contains a closed ball B[x0, r ]. Let x be any element of X such that 1
2‖x‖ ≤ r .

Then the vectors x0 ± x
2 are in the ball B[x0, r ]. Since x = x0 + x

2 − (x0 − x
2 ) we have

pλ(x) ≤ pλ(x0 + x
2 ) + pλ(x0 − x

2 ) ≤ 2n0.

This is true for all x with ‖x‖ ≤ 2r . Hence, supλ sup‖x‖≤2r pλ(x) ≤ 2n0 <∞. If 1 ≤ 2r , the

proof is over. If this is not the case, choose a positive integer m > 1
2r . Now if ‖x‖ ≤ 1, then

‖ x
m
‖ < 2r , and pλ(x) ≤ mpλ(

x
m
) ≤ 2mn0. So, supλ sup‖x‖≤1 pλ(x) ≤ 2mn0 <∞.
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A version of the uniform boundedness principle for
continuous ‘affine’ functions

A version of the uniform boundedness principle for continuous ‘affine’
functions defined on a bounded complete convex subset of a normed space
X is as follows:

Theorem 11.
Let X (not necessarily Banach) and Y be normed spaces, E be a bounded
complete convex subset of X , and A be a set of continuous maps (not
necessarily linear) A : E → Y satisfying

A(rx + (1− r)y) = rAx + (1− r)Ay for 0 < r < 1 and x , y ∈ E ,

such function is called an affine function.

Then a set A of continuous affine functions is uniformly bounded on E iff
it is pointwise bounded on E .
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We have the following theorem when a collection of bounded
operators on Banach spaces is not uniformly bounded.

Theorem 12.
Let A be a family of bounded linear operators from a Banach space X to a
normed space Y and D be the set of all x ∈ X such that the set
Sx = {‖Ax‖ : A ∈ A} is unbounded. Then D is dense in X or empty.

Proof.

Since A is not uniformly bounded, it is not pointwise bounded. Then there exists x0 ∈ X such

that x0 ∈ D. Let X0 = X\D. As X0 is a proper subspace of X (x0 /∈ X0), the interior of X0 is

empty, (X0 is nowhere dense, hence it is of first category). Therefore (the complement of X0) D

is dense in X .
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Aliter.

Suppose that D is not dense in X . Then there is a ∈ X with a /∈ D. So there is r > 0 such that

the open ball B(a, r) is disjoint from D. In particular, a /∈ D. Let x be any element of X . We

can find δ, with 0 < δ < 1 such that δ‖x − a‖ < r (using this we are going to find another

element not in D). Let y = a+ δ(x − a). Then ‖y − a‖ = δ‖x − a‖ < r , and so y /∈ D. Thus

we see that the sets Sa and Sy with x = a, y are bounded. So there exist finite constants M1

and M2 such that ‖Aa‖ ≤ M1, ‖Ay‖ ≤ M2, for all A ∈ A. Since Ay = Aa+ δAx − δAa, we get

δ‖Ax‖ = ‖Ay‖+ (δ − 1)‖Aa‖ ≤ M2 + (1− δ)M1 for all A ∈ A. This implies that x /∈ D. Since

this is true for any x ∈ X , we see that D is empty.
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Another Form.

Suppose a family of continuous linear operators on a Banach space X is
not uniformly bounded with respect norm. Then the set at which this
family converges pointwise is of the first category (i.e., it is a
countable union of nowhere dense sets). Note that every closed subspace is
of the first category.

Geometrically, the uniform boundedness theorem says that either each
A ∈ A maps a bounded subset of a Banach space X into a fixed ball in Y
or there is some x ∈ X such that no ball in Y contains all Ax with A ∈ A.
The choice of such x is dense in X .

Theorem 13 (Banach-Steinhauss theorem).
Let X be a Banach space and Y be a normed space. Let I be an arbitrary
indexing set and, for each i ∈ I , set Ti ∈ B(X ,Y ). Then, either there
exists M > 0 such that ‖Ti‖ ≤ M for all i ∈ I , or supi∈I ‖Tix‖ =∞ for all
x belonging to some dense Gδ set in X .
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Proof

For each x ∈ V , set ψ(x) = supi∈I ‖Tix‖. Let Vn = {x ∈ V : ψ(x) > n}. Since each Ti is

continuous and since the norm is a continuous function, it is easy to see that Vn is open for

each n. Assume now that there exists N such that VN fails to be dense in V . Then there exists

x0 ∈ V and r > 0 such that x + x0 /∈ VN if ‖x‖ < r . (In other words, there is an open ball

B(x0, r) centered at x0 and of radius r , which does not intersect VN .) This implies that

ψ(x + x0) ≤ N for all such x and so, for all i ∈ I , ‖Ti (x + x0)‖ ≤ N. Thus, if ‖x‖ ≤ r
2 , we

have, for all i ∈ I , ‖Tix‖ ≤ ‖Ti (x + x0)‖+ ‖Ti (x0)‖ ≤ 2N. It follows from this that, for all

i ∈ I , ‖Ti‖ ≤ 4N
r

and so the first alternative holds with M = 4N
r
. The other possibility is that

each Vn is dense, and so, V being complete, by Baire’s theorem, ∩nVn is a dense Gδ and for

each x ∈ ∩nVn, we have ψ(x) =∞.
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Application of Uniform Boundedness Principle - Resonance
Theorem

Theorem 14.
Let X be a Banach space, Y a normed space and
Tn ∈ B(X ,Y ), n = 1, 2, . . . such that supn ‖Tn‖ =∞. Then there exists
an x0 ∈ X such that supn ‖Tnx0‖ =∞.

The point x0 is often called a point of resonance. The points of
resonance form a dense subset of X .

Theorem 15.

Let X be a normed space and E be a subset of X . Then E is bounded iff
x∗(E ) is bounded for every x∗ ∈ X ∗.
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Proof

As E is bounded, there exists k > 0 such that ‖x‖ ≤ k for all x ∈ E . For each x∗ ∈ X∗,

|x∗(x)| ≤ ‖x∗‖ ‖x‖ ≤ c‖x∗‖, x∗(E) is bounded. Or, continuous image of a bounded set is

bounded, x∗(E) is bounded, for each x∗ ∈ X∗.

Conversely, X can be embedded into X∗∗ by the canonical embedding J : X → X∗∗ by x 7→ φx ,

where φx (x∗) = x∗(x). And ‖x‖ = ‖φx‖ (to prove this we used Hahn-Banach theorem).

Through this isometric isomorphism J, we can consider X as a subspace of X∗∗. Since

{|x∗(x)| : x ∈ E} is bounded for each x∗ ∈ X∗, {|φx (x∗)| : x ∈ E} is bounded for each

x∗ ∈ X∗.

Since X∗ is Banach and {φx (x∗)} is pointwise bounded on X∗, by uniform boundedness

theorem, {φx : x ∈ E} is uniformly bounded. Hence {‖φx‖ : x ∈ E} = {‖x‖ : x ∈ E} is
bounded. The boundedness of x∗(E) for every x∗ ∈ X∗ implies the boundedness of E in X .
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Boundedness of a subset of a Banach space

To check the boundedness of a set V in a Banach space, it thus suffices to
verify that its image under each continuous linear functional is bounded. In
finite dimensional spaces, this is what we precisely do. We check that the
image under each coordinate projection is bounded and these form a basis
for the dual space.

In the language of weak topologies, the conclusion of the Theorem 15 is
read as “weakly bounded ⇐⇒ bounded”.

Corollary 16.
Every weakly convergent sequence (xn) is bounded and ‖x‖ ≤ lim inf ‖xn‖.

Proof.

Suppose (xn) is a weakly convergent sequence. Then for each f ∈ X∗, the sequence (f (xn)) is

convergent, bounded and hence (xn) bounded.
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Application of Uniform Boundedness

Boundedness is a necessary condition for weakly convergent sequence. An
unbounded sequence cannot be weakly convergent (or convergent).

Corollary 17.
Let X be a Banach space, Y be a normed space. Then A ⊆ B(X ,Y ) is
bounded iff {y∗(Tx) : T ∈ A} is bounded for every x ∈ X and every
y∗ ∈ Y ∗.

Proof.

For a fixed x ∈ X , {Tx : T ∈ A} is bounded, by resonance theorem. From Banach-Steinhaus

theorem {T : T ∈ A} is bounded.
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Theorem 15 is not true in general when the boundedness is
replaced by convergence.

The convergence of x∗(xn) for every x∗ ∈ X ∗ may not imply the
convergence of (xn) in X .

Example 18.
X = `2 = X ∗ and y = (x∗(e1), x

∗(e2), . . .). Then
y = (x∗(en)) ∈ (`2)

∗ = `2. Hence (x∗(en)) converges to 0 for every
x∗ ∈ `2. But (en) does not converge in X , since ‖en − em‖2 =

√
2, for all

n 6= m.
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Application of Uniform Boundedness Principle

Theorem 19.
Let X and Y be normed spaces and T : X → Y be a linear operator. Then
T is continuous iff y∗ ◦ T ∈ X ∗ for every y∗ ∈ Y ∗ (the composition map
g ◦ A : X → K belongs to X ∗ for every g ∈ Y ∗).

Proof.

Since T is given to be linear, we see that y∗ ◦ T is linear for each y∗ ∈ Y ∗. If T is continuous,

y∗ ◦ T is continuous. Conversely, suppose y∗ ◦ T is continuous for each y∗ ∈ Y ∗. Let

S = {x ∈ X : ‖x‖ ≤ 1}. Then (y∗ ◦ T )(S) is bounded in K. Since this is true for all y∗ ∈ Y ∗,

by uniform boundedness principle, T (S) is bounded in Y , that is, T is bounded.
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If the scalar field K is R, we can give some geometric
meaning to the resonance theorem.

Let X be a normed space over R and f be a linear functional on X .
Corresponding to α ∈ R, consider the hyperplane

Hf ,α = {x ∈ X : f (x) = α} = xα + N(f ),

where xα ∈ X is such that f (xα) = α.

Now, for E ⊆ X , the set f (E ) is bounded if and only if there exist α, β ∈ R
such that α ≤ f (x) ≤ β for all x ∈ E iff E is on the left side of Hf ,β and
on the right side of Hf ,α.

Thus, resonance theorem states that a subset E ⊆ X is bounded in X iff
for every f ∈ X ∗ there are α, β ∈ R such that E lies between the
hyperplanes Hf ,α and Hf ,β .
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Using uniform boundedness principle, we can show that
P[a, b] with ‖.‖∞ is not a Banach space.

Proposition 20.
Let X = P[a, b] with ‖.‖∞. Using uniform boundedness principle, show
that X is not a Banach space.

Proof.

We construct a sequence of bounded linear operators on X which is pointwise bounded but not
uniformly bounded, so that X cannot be complete. For x(t) =

∑∞
j=0 αj t

j (αj = 0 for j > Nx ),
‖x‖ = maxj |αj |. Define fn : X → K by fn(x) = α0 + α1 + · · ·+ αNx . Then each fn is linear and
bounded since |αj | ≤ ‖x‖, so that |fn(x)| ≤ (n + 1)‖x‖. Hence (fn) is pointwise bounded.

We now show that (fn) is not uniformly bounded, that is, there is no c such that ‖fn‖ ≤ c for all

n. This we do by choosing particularly disadvantageous polynomials. For fn we choose x defined

by x(t) = 1+ t + · · ·+ tn. Then ‖x‖ = 1 and ‖fn‖ ≥ |fn(x)|‖x‖ = n + 1 so that (‖fn‖) is
unbounded.
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Summary

Theorem 21.
Let A be a subset of bounded linear operators from a Banach space X into
a normed space Y . The following statements are equivalent:
1. A is bounded (uniformly bounded).
2. {Tx : T ∈ A} is bounded for each x ∈ X (pointwise bounded).
3. {y∗(Tx) : T ∈ A} is bounded for each x ∈ X and y∗ ∈ Y ∗ (weakly

bounded).
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Applications

Theorem 22 (Continuity of bilinear maps).
Let X ,Y ,Z be normed spaces, of which X or Y is Banach and A : X × Y → Z is linear. Define
Ax : Y → Z and Ay : X → Z by Ax (y) = A(x , y) = Ay (x), x ∈ X , y ∈ Y . If Ax ∈ B(Y ,Z) for
all x ∈ X and Ay ∈ B(X ,Z) for all y ∈ Y , then A is jointly continuous, and
‖A(x , y)‖ ≤ k‖x‖ ‖y‖ for x ∈ X , y ∈ Y , where k is a constant. In particular, if xn → x in X
and yn → y in Y , then A(xn, yn)→ A(x , y) in Z .

Proof. Suppose that X is Banach. Let E = {y ∈ Y : ‖y‖ ≤ 1}. Consider the family

{Ay : y ∈ E} of bounded linear operators from X to Z . For x ∈ X , y ∈ E ,

‖Ay (x)‖ = ‖A(x , y)‖ = ‖Ax (y)‖ ≤ ‖Ax‖ ‖y‖ ≤ ‖Ax‖. This shows that this family is pointwise

bounded on X . Hence the uniform boundedness principle implies that {‖Ay‖ : y ∈ E} is a
bounded set. Let ‖Ay‖ ≤ k for all y ∈ E . For x ∈ X , y ∈ Y , y 6= 0 let z = y

‖y‖ . Then z ∈ E ,

and so, ‖A(x , z)‖ = ‖Az (x)‖ ≤ ‖Az‖ ‖x‖ ≤ k‖x‖. However, A(x , z) = Ax (z) =
1
‖y‖A(x , y).

Hence, ‖A(x , y)‖ = ‖y‖ ‖A(x , z)‖ ≤ k‖x‖‖y‖. Since A(x , 0) = Ax (0) = 0, this is true when

y = 0 also. Therefore, ‖A(x , y)‖ ≤ k‖x‖‖y‖ for all x ∈ X , y ∈ Y . We can easily prove that A

is jointly continuous. If Y is Banach, we can consider the family {Ax : x ∈ X , ‖x‖ ≤ 1} of
bounded linear operators from Y to Z and proceed as above.
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Applications

Proposition 23.
Let (an) be a sequence of scalars such that

∑∞
n=0 anxn converges for every

(xn) converging to zero. Then
∑∞

n=0 |an| <∞ (the series
∑∞

n=1 an is
absolutely convergent).

Proof.

Let fn : c0 → K by fn(x) =
∑n

i=1 aixi , for x = (xn) ∈ c0. Since
|fn(x)| ≤

∑n
i=1 |ai |.‖x‖∞, each fn is a continuous linear functional on c0.

Let f (x) = limn→∞ fn(x) = limn→∞
∑n

i=1 aixi . Then f is a continuous
linear functional on X and ‖f ‖+

∑∞
n=1 |an|. Since f is bounded,∑∞

n=1 |an| <∞.

P. Sam Johnson Uniform Boundedness Principle 28/53



Applications

Proposition 24.

Let 1 ≤ p ≤ ∞ and 1
p + 1

q = 1. A sequence y = (y1, y2, . . .) belongs to `q
iff

∑∞
j=1 xjyj converges for every x ∈ `p.

Particular cases for p = 1 and p =∞ of the Proposition 24 is discussed
below.

Exercise 25.
Let (an) be a sequence of scalars such that

∑∞
n=1 anxn converges for every

(xn) ∈ `1. Show that (an) ∈ `∞.

Exercise 26.
Let fn : `1 → K by fn(x) =

∑n
i=1 aixi . If

∑
akxk is convergent, whenever

(an) ∈ c0, then (an) ∈ `1.
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Convergence of Sequences of Operators

Sequences of bounded linear operators and functionals arise frequently in
the abstract formulation of concrete situations, for instance in connection
with convergence problems of Fourier series or sequences of interpolation
polynomials or methods of numerical integration, to name just a few.

In such cases one is usually concerned with the convergence of those
sequences of operators or functionals, with boundedness of corresponding
sequences of norms or with similar properties. For sequences of operators
Tn ∈ B(X ,Y ) there types of convergence turn out be of theoretical as well
as practical value.

P. Sam Johnson Uniform Boundedness Principle 30/53



Convergence of Sequences of Operators

These are

1. Convergence in the norm on B(X ,Y ),
2. Strong convergence of (Tnx) in Y ,
3. Weak convergence of (Tnx) in Y .

The definitions and terminology were introduced by J. von Neumann.
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Uniform Boundedness Theorem

Theorem 27 (Uniform Boundedness Theorem).
Let X and Y be normed spaces and (Tn) be a sequence in B(X ,Y ) such
that (Tnx) converges in Y for every x ∈ X . If (‖Tn‖) is a bounded
sequence, then the operator T : X → Y defined by Tx = limn Tnx , x ∈ X ,
belongs to B(X ,Y ) and ‖T‖ ≤ lim infn ‖Tn‖.

Proof.

Define Tx = limTnx . The linearity of T follows from its definition. Also,
for every x ∈ X , we have
‖Tx‖ = limn→∞ ‖Tnx‖ = lim infn ‖Tnx‖ ≤ lim infn ‖Tn‖ ‖x‖ so that T is
bounded and ‖T‖ ≤ lim infn ‖Tn‖.
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Uniform Boundedness Theorem

In the above result, it was required that (Tnx) converges for every x ∈ X .
One may ask whether this condition can be guaranteed by knowing the
convergence of (Tnx) for x in some subset E of X .

It can be easily seen that if E ⊆ X is such that span(E ) = X or if E
contains any of the sets {x ∈ X : ‖x‖ < r}, {x ∈ X : ‖x‖ = r} for some
r > 0, then the convergence of (Tnx) for x ∈ E implies the convergence of
(Tnx) for all x ∈ X .

Now we show that if Y is a Banach space, then E can be any set such that
span(E ) is dense in X .
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The strict inequality can occur in ‖T‖ ≤ lim infn→∞ ‖Tn‖.

Example 28.
If X = `1 and fn(x) = xn, then fn ∈ X ∗ and fn(x)→ f (x) = 0 for each
x ∈ X . Since ‖fn‖ = 1 for each n, we have 0 = ‖f ‖ < lim inf ‖fn‖ = 1.

Remark 29.
By Uniform Boundedness Theorem, the condition of boundedness of (‖Tn‖)
is redundant if X is Banach. That is, if X is Banach and if Tn →s T , then
T is also bounded by Uniform Boundedness principle. What is the relation
between this T and the uniform limit of (Tn)? From above point, the norm
of T is less than or equal to the norm of uniform limit of (Tn).
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Strong Cauchy Sequence

Suppose X is Banach. If a sequence (Tn) is Cauchy in the strong sense,
that is, for all x ∈ X the sequence (Tnx) is Cauchy in X , then there exists
T ∈ B(X ) such that Tn → T strongly. That is, if X is complete, then the
strong operator topology on B(X ,Y ) is complete.

The sequence (Tn) in B(X ,Y ) is said to be a strong Cauchy sequence if
the sequence (Tnx) is a Cauchy sequence for all x ∈ X . The above result
says that if the spaces X and Y are Banach spaces, then B(X ,Y ) is
complete in the strong sense.
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Applications of Banach-Steinhauss theorem

Theorem 30.
Let Tn ∈ B(X ,Y ) and Y be Banach. If Tnx → Tx for every x in a total
subset E and (‖Tn‖) is bounded, then Tn →s T . Moreover, if X and Y
are Banach, Tn →s T iff Tn →s on some total subset.

Proof.

Suppose Y is Banach and Tnx → Tx for every x ∈ E such that D = 〈E〉 is dense in X . Let
x ∈ X .

Since D is dense in X , for each ε > 0, there exists u ∈ D such that ‖x − u‖ < ε. Since (Tnu)
converges for all u ∈ D, there exists N such that ‖Tnu − Tmu‖ < ε, for all n,m ≥ N.

Since (‖Tn‖) is bounded, there exists c > 0 such that supn ‖Tn‖ ≤ c. For n,m ∈ N,

‖Tnx − Tmx‖ ≤ (‖Tn‖+ ‖Tm‖)‖x − u‖+ ‖Tnu − Tmu‖ ≤ (2c + 1)ε, (Tnx) is Cauchy in Y ,

hence (Tnx) converges, for all x ∈ X .
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Strong Convergence

To use the Banach-Stienhauss theorem, the following result on the strong convergence of a
sequence of bounded linear operators is useful.

Theorem 31.
Suppose X and Y are Banach. A sequence of operators Tn ∈ B(X ,Y ) converges strongly to an
operator T ∈ B(X ,Y ) if and only if the sequence (Tnx) converges for any x in a total subset E .

Proof. If (Tnx) converges for any x ∈ X , then (Tnx) converges for any x from a dense subset

of X . From Banach-Steinhaus theorem, there exists c > 0 such that ‖Tn‖ ≤ c. On the other

hand, assume that (Tnx) converges for any x in a dense subspace M of X and ‖Tn‖ ≤ c. For

any x ∈ M define the operator T0 via T0x = limn Tnx . It is clear that the operator T0 is linear

and moreover from ‖Tnx‖ ≤ c‖x‖ it follows that ‖T0‖ ≤ c. We extend the operator T0 on the

whole space X as follows: for any x ∈ X take xm ∈ M, xm → x and set Tx = limm T0xm. It is

easy to check that the limit exists, does not depend on the choice of the sequence xm and

‖T‖ ≤ c. Let us show that for any x ∈ X , Tnx → Tx . For ε > 0 and take x0 ∈ M such that

‖x − x0‖ < ε
4(c+1) and next take N0 > 0 such that for any n > N0, ‖Tnx0 − Tx0‖ < ε

2 . Thus,

for any n > N0, we obtain ‖Tnx−Tx‖ ≤ (‖Tn‖+‖T‖)(‖x0− x‖)+‖Tnx−Tx0‖ < ε
2 + ε

2 = ε.
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Strong Convergence

In the above proof, it is sufficient to consider (Tnx) is Cauchy in Y in place of (Tnx) converges
for every x in a total subset M of X .

Theorem 32.
A sequence (Tn) of operators Tn ∈ B(X ,Y ), where X and Y are Banach spaces, is strongly
operator convergent iff the sequence (‖Tn‖) is bounded and the sequence (Tnx) is Cauchy in Y
for every x in a total subset M of X .

Proof. We prove only the converse part. Let x ∈ X and ε > 0 be given. Since span M is dense

in X , there is a y ∈ span M such that ‖x − y‖ < ε
3c , where ‖Tn‖ ≤ c for all n. Since

y ∈ span M, the sequence (Tny) is Cauchy. Hence there is an N such that ‖Tny − Tmy‖ < ε
3 ,

for all m, n > N. Using these two inequalities and applying the triangle inequality, we readily see

that (Tnx) is Cauchy in Y because for m, n > N we obtain ‖Tnx − Tmx‖ ≤
‖Tnx −Tny‖+ ‖Tny −Tmy‖+ ‖Tmy −Tmx‖ < ‖Tn‖ ‖x − y‖+ ε

3 + ‖Tm‖ ‖x − y‖ < ε. Since

Y is complete, (Tnx) converges in Y . Since x ∈ X was arbitrary, this proves strong operator

convergence of (Tn).
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Applications in summability of sequences and numerical
integration

Corollary 33.
A sequence (fn) of bounded linear functionals on a Banach space X is
weak∗ convergent, and the limit being a bounded linear functional on X iff
the sequence (‖fn‖) is bounded and the sequence (fn(x)) is Cauchy for
every x in a total subset M of X .

This has interesting applications in summability of sequences and numerical
integration.
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An Interesting Fact

X and Y are normed spaces. (Tn) is a sequence of bounded linear
operators from X into Y . Suppose Tn →s T where Tx = limTnx . Since
addition and scalar multiplication are continuous, T is linear. Suppose X is
Banach. Then T is bounded but Tn need not converge to T in the norm
topology.

Example 34.
Let Tn : `2 → `2 by Tn(x1, x2, . . .) = (x1, x2, . . . , xn, 0, 0, . . .). Tnx → Ix
because ‖Tnx − x‖22 =

∑∞
j=n+1 |xj |2 as n→∞ but

sup‖x‖≤1 ‖Tnx − x‖2 ≥ ‖Tnen+1 − en+1‖2 = 1 for all n ∈ N. We may
observe that for each n ∈ N, the operators Tn and I − Tn are orthogonal
projections, and hence, we already know that
sup‖x‖≤1 ‖Tnx − x‖2 = ‖Tn − I‖ = 1 for all n. This example shows that
Tn ∈ B(X ,Y ) and Tnx → x for all x . Since X is Banach, I is bounded but
Tn 9 I in the norm topology.
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Useful consequence of the uniform boundedness principle in
numerical functional analysis

A consequence of the uniform boundedness principle, which is very useful in
numerical functional analysis, is the following.

Theorem 35.
Let X be a Banach space, Y a normed space, and (An) be a sequence in
B(X ,Y ) such that (Anx) converges for every x ∈ X . Let A : X → Y be
defined by Ax = limn Anx , x ∈ X . Then for every totally bounded subset
S ⊆ X , supx∈S ‖Anx − Ax‖ → 0 as n→∞.

We obtained uniform convergence of a sequence of operators in B(X ,Y )
on totally bounded subsets of X provided we have pointwise convergence
on a Banach space X .
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Gliding Hump Argument

We now see a different derivation of the uniform boundedness principle
that does not use any form of the Baire category theorem. The argument,
essentially due to Hahn, is of a type called a “gliding hump” (also called
“sliding hump”) argument.

The only use of completeness in the argument is to assure that a certain
absolutely convergent series converges.

The proof of uniform boundedness principle without using any other form
of the Baire category theorem is essentially from Hahn’s 1922 paper,
through he stated the result only for sequences of linear functionals. This is
called a gliding hump argument.
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Gliding Hump Argument

Gliding hump arguments probably first appeared in work by Henri Lebesgue
from 1905. Hahn specifically stated in his paper that the basic method for
his proof was taken from a 1909 paper by Lebesgue.

The original proofs given by Hans Hahn and Stefan Banach in 1922 were
quite different: they began from the assumption that

sup
T∈F
‖T‖ =∞

and used a “gliding hump” (also called “sliding hump”) technique to
construct a sequence (Tn) in F and a point x ∈ X such that

lim
n→∞

‖Tnx‖ =∞.

P. Sam Johnson Uniform Boundedness Principle 43/53



A non-Baire proof of Banach-Steinhaus theorem

We now see a proof of the uniform boundedness theorem which can be
comprehended by observing a single equation. The proof is elementary in
Halmos’s sense of the work in that it does not use the Baire category
theorem or any related lemmas. It uses a so-called “gliding-hump”
technique. It is weaker than the Baire-based proof since the other one
shows that an unbounded family of operators can only be pointwise
bounded on a meager set of points, wheras this proof reveals only that
some sequence may be constructed on which an unbounded family of
operators is unbounded at some point.

Theorem 36 (Banach-Steinhaus Theorem).
Let X be a Banach space and Y be a normed space and F ⊆ B(X ,Y ).
Then if sup{‖Tx‖ : T ∈ F} <∞ for all x ∈ X we must have that

sup{‖T‖ : T ∈ F} <∞.
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Proof adapted from “A Short Course in Banach Space
Theory”, by N.L.Carothers.

Suppose that F is not uniformly bounded, i.e. supT∈F ‖T‖ =∞.

We wish to establish the existence of a point at which F is not bounded.

Fix 0 < δ < 1
2 . Select T1 from F Let x1 in X be so ‖x1‖ = δ and ‖T1x1‖ > (1− δ)‖T1‖ ‖x1‖.

We now conduct an induction. Having selected T1, . . . ,Tn−1 and x1, . . . , xn−1, select Tn from
F for which

‖Tn‖ >
Mn−1 + n

(1− 2δ)δn
,

where Mn−1 = sup
T∈F

‖T (x1 + · · ·+ xn−1)‖ and then choose xn in X0 with ‖xn‖ = δn and

‖Tnxn‖ > (1− δ)‖Tn‖ ‖xn‖ = (1− δ)δn‖Tn‖.
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Proof (contd...)

Notice that the series
∑∞

k=1 xk has Cauchy sequence of partial sums, hence converges in the
Banach space X . Observe that the choices of Tn and xn entail that(

1−
δ

1− δ

)
‖Tnxn‖ =

1− 2δ
1− δ

‖Tnxn‖ > (1− 2δ)δn‖Tn‖ > Mn−1 + n

while ∣∣∣∣∣∣
∣∣∣∣∣∣Tn

∞∑
k=n+1

xk

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ ‖Tn‖

∞∑
k=n+1

δk = ‖Tn‖
δn+1

1− δ
<

δ

1− δ
‖Tnxn‖.

We put this together to compute for x =
∑∞

k=1 xk that

‖Tnx‖ ≥ ‖Tnxn‖ −

∣∣∣∣∣
∣∣∣∣∣Tn

n−1∑
k=1

xk

∣∣∣∣∣
∣∣∣∣∣−
∣∣∣∣∣∣
∣∣∣∣∣∣Tn

∞∑
k=n+1

xk

∣∣∣∣∣∣
∣∣∣∣∣∣

>

(
1−

δ

1− δ

)
‖Tnxn‖ −Mn−1 > n.

Hence F is not pointwise bounded on all of X which contradicts the assumption. Thus the proof

is completed.
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Humps for Tn

Notice that the point of this proof is that we may write

Tnx = Tn

n−1∑
k=1

xk︸ ︷︷ ︸
norm≤Mn−1

+ Tnxn︸︷︷︸
norm>>Mn−1

+ Tn

∞∑
k=n+1

xk︸ ︷︷ ︸
norm<<‖Tnxn‖

so that the growth of Tnxn drives the growth of Tnx . The series defining x
“humps”, for Tn, at n, and is relatively tame otherwise; it uniformly sums
bad phenomena for all Tn, simultaneously. In building the proof, we
selected vectors xn to be summable via a geometric series (probably
primarly because these are the only sequences we really understand), and
choose the growth of operators Tn, afterwards.
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Refer page 49 in the book “An Introduction to Banach
Space Theory” by Robert E. Megginson

Suppose that is a nonempty collection of bounded linear operators from a Banach space X into
a normed space Y such that sup{‖T‖ : T ∈} = +∞. The goal is to find an x in X such that
sup{‖Tx‖ : T ∈} = +∞.

(a) The proof is based on the existence of sequences (Tn) and (xn) in and X respectively such
that the following two conditions are satisfied for each positive integer n:

‖Tnxn‖ ≥ n +

n−1∑
j=1

‖Tnxj‖ (or ≥ 1 if n = 1);

‖xn‖ ≤ 2−n min{‖Tj‖−1 : j < n} (or ≤ 2−1 if n = 1).

Argue that the only obstacle to the inductive construction of the sequence is the existence of an
x with the desired property. The existence of such a pair of sequences may therefore be assumed.

Exercise 37.
(b) Show that the series

∑
n xn converges to some x in X .

(c) Show that
∑∞

j=n+1 ‖Tnxj‖ ≤ 1 for each n.

(d) Show that ‖Tnx‖ ≥ n − 1 for each n, so sup{‖Tx‖ : T ∈} = +∞.
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Proof

The sequences (Tn) and (xn) are chosen so that
∑

n xn converges to some
x in X and, for each n, the major contribution to Tnx comes from Tnxn.

If (‖Tnxj‖)∞j=1 is considered to be a sequence that depends on the
parameter n, then the sequence has a “hump” in it at the nth term.

As n increases, this hump glides forward and has unbounded height.
Incidentally, the argument can be simplified very slightly by replacing

n−1∑
j=1

‖Tnxj‖

by ‖Tn(
∑n−1

j=1 xj)‖ in (a), but then it is not obvious that ‖Tnxn‖ must be
the dominant term of the sequence (‖Tnxj‖)∞j=1, and therefore it is harder
to see the hump.
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A simple elementary proof of the uniform boundedness
theorem1

Theorem 38 (Uniform Boundedness Theorem).
Let F be a family of bounded linear operators from a Banach space X to a
normed linear space Y . If F is pointwise bounded (i.e., supT∈F‖Tx‖ <∞
for all x ∈ X ), then F is norm-bounded (i.e., supT∈F ‖T‖ <∞).

1Alan D. Sokal, A really simple elementary proof of the uniform boundedness
theorem, The American Mathematical Monthly, Vol.118, No.5 (May 2011), pp.450-452
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Proof

To prove the theorem, we first prove the following lemma.

Lemma 39.

Let T be a bounded linear operator from a normed linear space X to a
normed linear space Y . Then for any x ∈ X and r > 0, we have

sup
x ′∈B(x ,r)

‖Tx ′‖ ≥ ‖T‖r , (1)

where B(x , r) = {x ′ ∈ X : ‖x ′ − x‖ < r}.

Proof. For ξ ∈ X we have

max{‖T (x + ξ)‖, ‖T (x − ξ)‖} ≥ 1
2 [‖T (x + ξ)‖+ ‖T (x − ξ)‖] ≥ ‖Tξ‖, (2)

where the second ≥ uses the triangle inequality in the form ‖α− β‖ ≤ ‖α‖+ ‖β‖. Now take the

supremum over ξ ∈ B(0, r).
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Proof of the Uniform Boundedness Theorem

Suppose that supT∈F ‖T‖ =∞,and choose (Tn)∞n=1 in F such that ‖Tn‖ ≥ 4n.

Then set x0 = 0, and for n ≥ 1 use the Lemma 39 to choose inductively xn ∈ X such that
‖xn − xn−1‖ ≤ 3−n and ‖Tnxn‖ ≥ 2

33
−n‖Tn‖.

The sequence (xn) is Cauchy, hence covergent to some x ∈ X ; and it is easy to see that
‖x − xn‖ ≤ 1

23
−n and hence

‖Tnx‖ ≥
1
6
3−n‖Tn‖ ≥

1
6
(4/3)n →∞.

As just seen, this proof is most conveniently expressed in terms of a
sequence (xn) that converges to x . This contrasts with the earlier “gliding
hump” proofs, which used a series that sums to x . Of course, sequences
and series are equivalent, so each proof can be expressed in either
language; it is a question of taste which formulation one finds simpler.
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